Bedingte Unabhängigkeit
Die bedingte Unabhängigkeit ist in der Wahrscheinlichkeitstheorie eine Verallgemeinerung der stochastischen Unabhängigkeit von Ereignissen, Mengensystemen und Zufallsvariablen mittels der bedingten Wahrscheinlichkeit und des bedingten Erwartungswertes. Die bedingte Unabhängigkeit findet beispielsweise Anwendung bei Aussagen über austauschbare Familien von Zufallsvariablen.
Definition
Gegeben sei ein Wahrscheinlichkeitsraum 
, 
sowie eine Unter-σ-Algebra 
 
von 
. 
Sei 
 
die bedingte Wahrscheinlichkeit gegeben 
. 
Eine Familie von Teil-σ-Algebren  
von 
 
heißt bedingt unabhängig gegeben 
, 
wenn für jede endliche Teilmenge 
 
von 
 
und jede beliebige Wahl von 
 
mit 
 
gilt, dass 
- . 
Aufgrund der Eigenschaften der bedingten Wahrscheinlichkeit ist die Identität als P-fast sicher zu verstehen.
Eine Familie von Zufallsvariablen  
heißt bedingt unabhängig gegeben 
, 
wenn die Familie der erzeugten σ-Algebren 
 
bedingt unabhängig gegeben 
 
ist. 
Bemerkungen und Eigenschaften
- Angelehnt an die Formulierung "unabhängig 
  identisch verteilt" definiert man mittels der bedingten Wahrscheinlichkeit 
  eine Familie von Zufallsvariablen als unabhängig identisch verteilt gegeben 
  , wenn die Familie unabhängig gegeben ist und die bedingten Verteilungen alle gleich sind. 
- Beispielsweise ist jede Familie von Teil-σ-Algebren von immer unabhängig gegeben , genauso wie jede unabhängige Familie von σ-Algebren (im Sinne der Unabhängigkeit eines Mengensystems) immer unabhängig gegeben die triviale σ-Algebra ist. 
Literatur
- Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6.

 Wikipedia.de
  
    Wikipedia.de

© biancahoegel.de
Datum der letzten Änderung: Jena, den: 24.01. 2021