Rhomboeder
Ein Rhomboeder ist ein Polyeder, das von 6 Rauten begrenzt ist. Es ist ein Parallelepiped mit gleich langen Kanten und 3 gleichen Innenwinkeln an zwei gegenüber liegenden Ecken.
Formeln
| Größen eines 
      Rhomboeders mit der Kantenlänge a und dem Innenwinkel | ||
|---|---|---|
| Volumen |   | |
| Oberflächeninhalt | ||
| Inkugelradius | ||
| Höhe | ||
| Raumdiagonalen | ||
| Flächendiagonalen | ||
| Verhältnis von Inkugelvolumen zu Volumen | ||
| Winkel zwischen benachbarten Flächen | ||
| Raumwinkel in den Ecken | ||
Volumen
Das Volumen des Rhomboeders kann 
mithilfe der Formel für das Volumen des Parallelepipeds 
berechnet werden (siehe Parallelepiped 
- Volumen). Für das Rhomboeder sind alle Kanten gleich lang und die 3 Innenwinkel zwischen den 
Kanten gleich, also gilt  
und 
. 
Daraus ergibt sich das Volumen 
Flächenwinkel
Für zwei gegenüber liegenden Ecken des Rhomboeders sind die 3 anliegenden Innenwinkel der rautenförmigen Seitenflächen gleich. Eine solche Ecke bildet zusammen mit den 3 benachbarten Ecken ein Tetraeder. Betrachtet man die Umkugel dieses Tetraeders, dann gilt nach dem Kosinussatz für Kugeldreiecke die Gleichung
Dabei sind  
die Innenwinkel und 
 
die Flächenwinkel 
zwischen diesen Seitenflächen. 
Daraus folgt
Für die sechs anderen Ecken des Rhomboeders sind die anliegenden Innenwinkel 
gleich , 
 
und 
. 
Betrachtet man die Umkugel des entsprechenden Tetraeders, dann gilt nach dem Kosinussatz 
für Kugeldreiecke die Gleichung 
Dabei sind  
die Flächenwinkel zwischen den Seitenflächen mit den Innenwinkeln 
 
und 
. 
Daraus folgt
Wegen  
gilt 
. 
Raumwinkel
Der Raumwinkel in der Ecke eines Polyeders kann mit dem Satz von L'Huilier berechnet werden.
Für die zwei gegenüber liegenden Ecken des Rhomboeders mit den 3 gleichen Innenwinkeln  
ergibt sich der Raumwinkel 
weil in diesem Fall  
ist. 
Für die sechs anderen Ecken mit den anliegenden Innenwinkeln , 
 
und 
 
ergibt sich der Raumwinkel 
wobei in diesem Fall  
ist. 
Raumfüllung mit Rhomboedern
Der dreidimensionale euklidische Raum kann lückenlos mit kongruenten Rhomboedern ausgefüllt werden kann. Solche dreidimensionalen Parkettierungen werden Raumfüllung genannt.
Diese Raumfüllung aus Rhomboedern bildet ein Gitter. Es entspricht dem trigonalen Kristallsystem in der Kristallographie.
Dieses Gitter enthält parallele Ebenen. 
Deshalb ergeben die Flächenwinkel 
 
und 
 
zusammen 180°. Die im Gitter benachbarten Raumwinkel 
 
und 
 
entsprechen zusammen dem Flächenwinkel 
. 
Der volle Flächenwinkel beträgt 
 
und der volle Raumwinkel beträgt 
. 
Daher gilt 
. 
Außerdem sind im Gitter 2 gleiche Raumwinkel  
benachbart und entsprechen zusammen dem Flächenwinkel 
. 
Daher gilt 
. 
Anwendungen
 
  
 
  
Kunst und Natur
- Albrecht Dürer stellt in seiner teils mathematisch inspirierten Grafik Melencolia I ein speziell beschnittenes Rhomboeder dar, das durch diese Modifikation mit all seinen Eckpunkten auf einer Kugelfläche liegen würde.
- Maurits Cornelis Escher nutzte bei seinen unmöglichen Figuren bei Vorbetrachtungen und Strukturentwicklung auch verschiedene Rhomboeder.
Kristallographie
Das Rhomboeder findet sich in der Natur als Kristallform und auf atomarer Ebene in Kristallstrukturen wieder. Es ist die allgemeine Flächenform der rhomboedrischen Kristallklasse (3), eine Grenzform der trigonal-trapezoedrischen (32) und eine spezielle Form der ditrigonal-skalenoedrischen Kristallklasse (3m). Außerdem ist es die Grundform des rhomboedrischen Bravais-Gitters. Das Rhomboeder als Kristallform gibt es nur im trigonalen Kristallsystem.
Zum Beispiel kristallisieren die Mineralien Amethyst, Hämatit, Calcit und Dolomit im trigonalen Kristallsystem.
Das Farben-Rhomboeder
Das Farben-Rhomboeder erfüllt nach Harald Küppers die geometrische Lösung für seine Farbenlehre. Jeder Punkt innerhalb des geometrischen Körpers entspricht einer Farbvalenz. Das heißt, jeder dieser Farbpunkte ist durch seine drei Vektoren-Potentiale definiert. Durch Stauchung und Verzerrung lässt sich das Farben-Rhomboeder in einen RGB- oder einen CYM-Farbraum umwandeln, naturgemäß mit anderen Verhältnissen zwischen den Farbwerten.
Ein Rhomboeder, bei dem die kurze Diagonale der Außenflächen so lang wie die Kante des Rhomboeders ist, stellt ein symmetrisches Parallelepiped dar. Es stehen jeweils zwei Außenflächen einander parallel gegenüber. Jede rautenförmige Außenfläche besteht aus zwei gleichseitigen Dreiecken. Zerschneidet man ein Rhomboeder entlang der kurzen Diagonalen der Außenflächen, ergeben sich drei Teile: zwei Tetraeder und ein Oktaeder. Diese drei geometrischen Körper sind wiederum völlig symmetrisch. Sämtliche Außenflächen dieser drei neuen geometrischen Körper sind gleichseitige Dreiecke.
- Küppers' Farbrhomboeder
- 
   Farbkörper nach Harald Küppers Farbkörper nach Harald Küppers
- 
   anmerkenswerte Schnitte anmerkenswerte Schnitte
- 
   Achsen, Diagonalen und Kanten Achsen, Diagonalen und Kanten
Siehe auch

 Wikipedia.de
  
Wikipedia.de

© biancahoegel.de
Datum der letzten Änderung: Jena, den: 07.03. 2023



.jpg)
