Walther Hermann Nernst

deutscher Physiker und Chemiker

geboren: 25. Juni 1864 in Briesen
gestorben: 18. November 1941 in Zibelle

  • 1898 Mitglied der Akademie der Wissenschaften zu Göttingen (ab 1905 auswärtiges Mitglied)
  • 1905 Mitglied der Königlich Preußischen Akademie der Wissenschaften
  • 1921 Nobelpreis für Chemie des Jahres 1920, verliehen 1921 „als Anerkennung für seine thermochemischen Arbeiten“
  • Weitere Mitgliedschaften in Akademien der Wissenschaften: Budapest, Oslo, Venedig, Wien
  • Ehrendoktorwürden: in Graz (Dr. phil. h.c.), Erlangen (Dr. med. h.c.), Göttingen (Dr. med. h.c.), Danzig (1914 Dr.-Ing. E.h., Technische Universität Danzig), Oxford (Doctor of Science)

Nernst besuchte das humanistische Gymnasium in Graudenz. Walther bestand sein Abitur als Jahrgangsbester und hielt eine Abschlussrede in lateinischer Sprache.

Nach dem Abitur studierte Nernst Naturwissenschaften. Er begann sein Studium an der Eidgenössischen polytechnischen Schule in Zürich 1883 und 1884 bei Heinrich Friedrich Weber in Physik, bei Arnold Meyer in Mathematik und bei Viktor Merz in Chemie. Dann wechselte er an die Friedrich-Wilhelms-Universität zu Berlin zu Richard Börnstein (Physik), Georg Hettner (Mathematik) und Hans Heinrich Landolt (Chemie). Seine physikalischen Interessen konnte er anschließend bei Ludwig Boltzmann an der Karl-Franzens-Universität in Graz vertiefen.

Ende 1886 bot ihm Friedrich Kohlrausch eine Promotionsstelle in Würzburg an, denn die Technische Hochschule Graz erhielt erst 1902 das Promotionsrecht. Schon im Mai 1887 promovierte er in Würzburg mit der Arbeit „Über die elektromotorischen Kräfte, welche durch den Magnetismus in von einem Wärmestrome durchflossenen Metallplatten geweckt werden“.

Zusammen mit Svante Arrhenius kehrte er Mitte 1887 von Würzburg wieder nach Graz zurück. Wilhelm Ostwald kam zu einem Forschungsbesuch ebenfalls nach Graz, auch um sich mit seinem Freund Arrhenius wieder zu treffen. Er machte Nernst bei dieser Gelegenheit das Angebot einer Habilitation am Physikalisch-chemischen Institut der Universität Leipzig. Am 23. Oktober 1889 schloss Nernst in Leipzig seine Habilitationsschrift über die elektromotorische Wirksamkeit der Ionen ab. Sie bestätigte die ursprünglich von Arrhenius aufgestellten und später von Ostwald weiterentwickelten Modellvorstellungen über Ionen.

Im Sommersemester 1889, noch vor der Habilitation, war Nernst Vorlesungsassistent des Chemikers Julius Wilhelm Brühl an der Universität Heidelberg. Dann kehrte er nach Leipzig zurück, wurde im Oktober habilitiert und hielt im Wintersemester 1889/90 die Vorlesung Über Anwendungen der Mathematik auf chemische Probleme.

Im Februar 1890 ging Nernst auf das Angebot ein, eine Assistentenstelle an der Universität Göttingen zu übernehmen. Nach einer Probevorlesung erhielt er die Lehrberechtigung für das Fach Physik. Er begann nun als Assistent und Privatdozent bei Eduard Riecke. 1891 wurde er zum außerplanmäßigen Professor ernannt.

Nernst erfand 1894 in Göttingen eine für Wechselstrom modifizierte Wheatstone-Brücke als neues Verfahren zur Messung der Permittivität. Im selben Jahr entwickelte er ein neuartiges Potentiometer.

1905 formulierte er in einer seiner ersten Vorlesungen an der Friedrich-Wilhelms-Universität den dritten Hauptsatz der Thermodynamik (Nernstscher Wärmesatz, Nernst-Theorem). Offiziell stellte er sein Wärme-Theorem am 23.Dezember 1905 der Königlichen Akademie der Wissenschaften zu Göttingen vor. Um es experimentell zu bestätigen, musste Nernst die spezifische Wärme bei sehr tiefen Temperaturen messen können und zuerst das dafür nötige Verfahren entwickeln. In der weitergehenden Formulierung von Max Planck ist die Entropie am absoluten Nullpunkt null. Eine Konsequenz hieraus ist die Unerreichbarkeit des absoluten Nullpunktes der Temperatur.

1910 gelang es Nernst, den belgischen Großindustriellen Ernest Solvay zur Unterstützung einer Konferenz international bedeutender Physiker zu bewegen, die 1911 in Brüssel stattfand. Nernst selbst hielt sich dabei fachlich im Hintergrund. Das Treffen diente vor allem der Diskussion über die neuen Denkmodelle von Planck und Einstein und wurde ein Erfolg. Danach folgten zahlreiche weitere Solvay-Konferenzen für Physik, ab 1922 auch Solvay-Konferenzen für Chemie. Gemeinsam mit Max Planck konnte er 1913 Albert Einstein überzeugen, von Zürich nach Berlin zu wechseln; Einstein wurde 1917 der Direktor des von Nernst mitbegründeten Kaiser-Wilhelm-Instituts für Physik.

Im Mai 1914 war Nernst noch in Südamerika auf Vortragsreise. Kaum von dort zurück, begann Anfang August 1914 der Erste Weltkrieg. Nernst teilte die Kriegsbegeisterung, die mit weiten Kreisen der Bevölkerung auch die Mehrheit der deutschen Professorenschaft erfasst hatte. Er war in Berlin einer der wenigen Besitzer eines Automobils. So stellte er sich sogleich dem Kaiserlich Freiwilligen Automobilkorps als Fahrer zur Verfügung, obwohl er Ungedienter und schon 50 Jahre alt war. Am 11. August 1914 wurde er Mitglied des Automobilkorps, am 24. August wurde er der 1.Armee zugeordnet.

Ende des Jahres 1919 kehrte er nach Berlin zurück. Im akademischen Jahr 1921/1922 war er Rektor der Universität. Von 1924 bis 1932 hatte als Nachfolger von Heinrich Rubens den Lehrstuhl für Experimentalphysik inne.

1933 wurde Nernst emeritiert. Er zog sich aus dem akademischen Betrieb weitgehend zurück und lebte nun auf seinem Rittergut Ober-Zibelle. Er hielt aber weiter Verbindung nicht nur zu deutschen, sondern auch zu ausländischen Personen und Einrichtungen der Wissenschaft.

Leistungen

Seine erste Arbeit bei Wilhelm Ostwald behandelt die Konzentrationsketten verschieden konzentrierter einheitlicher Elektrolytlösungen. Die Ionen der konzentrierten Lösung wandern durch Diffusion in die Lösung mit schwächerer Konzentration. Je nach Wanderungsgeschwindigkeit können Kationen oder Anionen bei der Diffusion vorauseilen. Aufgrund der notwendigen Elektroneutralität in der Lösung müssen jedoch entgegengesetzt geladene Ionen den Ladungsunterschied ausgleichen, so dass die entgegengesetzten Ionen mit den schnell wandernden Ionen mitwandern. An der Phasengrenze entsteht ein Diffusionspotential.

Aufbauend auf den Arbeiten von Svante Arrhenius und Jacobus Henricus van ’t Hoff beschrieb er 1889 in seiner Habilitation die Prozesse in galvanischen Zellen. Ähnlich dem Dampfdruck über einer Flüssigkeit oder dem osmotische Druck zwischen verschieden konzentrierten Lösungen herrscht bei galvanischen Zellen ein elektrischer Lösungsdruck, welcher der Elektrolytkonzentration proportional ist. Beispielsweise setzt bei einem Daniell-Element die unedle Elektrode, ein Zinkstab, positive Zinkionen frei, wodurch sich diese Elektrode negativ auflädt. An der edleren Elektrode, dem Kupferstab, ist der Lösungsdruck sehr klein, insgesamt werden sich daher positive Kupferionen zu Kupfer abscheiden und die Elektrode positiv aufladen. Werden beide Elektroden des Daniell-Elements metallisch verbunden, folgt ein Ladungsausgleich, es fließt also ein Strom. Nernst hat diesen elektrochemischen Prozess durch eine Differentialgleichung beschrieben. Die Lösung der Differentialgleichung ist als Nernst-Gleichung bekannt. Sie gilt nicht nur für galvanische Zellen, sondern für alle Redoxreaktionen in der Chemie, und stellt auch eine Verbindung der Elektrochemie zur Thermodynamik her.

Im Jahr 1892 untersuchte Nernst die Potentialspannungen an Phasengrenzflächen, z.B. an der Grenze zwischen Silber und Silberchlorid. Bei der Dissoziation von Salzen und Säuren in verschiedenen Lösungsmitteln erkannte Nernst zusammen mit Paul Walden eine Abhängigkeit von der Dielektrizitätskonstanten des Lösungsmittels.

Nernst schlug vor, auf das Auffinden des absoluten Normalpotentials bei der elektromotorischen Kraft zu verzichten und stattdessen alle Potentialwerte auf die mit Wasserstoff umspülte Platinelektrode in 1-normaler Säure zu beziehen. Der Vorschlag fand Zustimmung: Normalpotentiale werden seitdem auf diese Elektrode bezogen.

1891 entwickelte Nernst das Nernstsche Verteilungsgesetz. Es klärt Fragen zur Verteilung eines Stoffes zwischen zwei Flüssigkeiten und ist für die Chromatographie und Extraktion von Bedeutung.

Nernst erforschte auch Reaktionsgeschwindigkeiten, heterogene Gasgleichgewichte und flüssige Kristalle. 1918 erkannte er Licht als ausreichende Energiequelle zur Induktion der Chlorknallgas-Reaktion und leitete einen dafür maßgeblichen Mechanismus ab. Damit leistete er einen wertvollen Beitrag für die Quantenmechanik von Max Planck.

Seitenende
Übersicht
Seite zurück
© biancahoegel.de; 
Datum der letzten Änderung:  Jena, den: 02.01. 2024