Härte

Härte ist der mechanische Widerstand, den ein Körper dem Eindringen eines anderen Körpers entgegensetzt. Härte ist nicht nur der Widerstand gegen härtere Körper, sondern auch der Widerstand gegen weichere und gleich harte Körper. Die Definition der Härte ist eine andere als die der Festigkeit, welche die Widerstandsfähigkeit eines Stoffes gegenüber Verformung und Trennung zum Mittelpunkt hat.

Die Härte eines Körpers lässt Rückschlüsse auf vielerlei Eigenschaften zu, wobei sich diese nach der Art des Körpers richten. Ein Beispiel ist das Verschleißverhalten. Harte Brillengläser zerkratzen weniger, harte Zahnräder nutzen sich langsamer ab. Bei der Auswahl von Werkzeugschneiden wie Fräskopf oder Drehmeißel ist die Härte von besonderer Bedeutung, denn harte Schneiden bleiben länger scharf.

Vielfache Anwendung und je nach fachlichem Schwerpunkt andere Akzentsetzung findet der Begriff der Härte in der Festkörperphysik, der Materialwissenschaft bei der Analyse von Werkstoffen und in den Geowissenschaften bei der Charakterisierung von Gesteinen und Mineralen. Beide überschneiden sich diesbezüglich auch mit den Ingenieurwissenschaften, wobei die Härte vor allem in der Ingenieurgeologie eine größere Rolle spielt. Die Härte gehört mit der Risszähigkeit, Festigkeit, Duktilität, Steifigkeit, Dichte und der Schmelztemperatur zu den Werkstoffeigenschaften eines Werkstoffes.

Härte und Festigkeit

Die Härte eines Werkstoffs hat nur bedingt etwas mit der Festigkeit des Werkstoffs zu tun, auch wenn die Festigkeit die Prüfverfahren zur Härtemessung, die auf der Eindringtiefe verschiedener Prüfkörper beruhen, beeinflusst. Der Einfluss der Festigkeit kann durch die Messung auf dünnen Filmen zwar reduziert, aber nicht völlig vermieden werden.

In bestimmten Fällen steht die Härte eines Werkstoffs allerdings in einem umwertbaren Zusammenhang zur Werkstoff-Festigkeit. Dann kann durch die verhältnismäßig preiswerte Härteprüfung eine meist viel aufwendigere Zugprüfung ersetzt werden. Von praktischer Bedeutung ist die Möglichkeit, eine Umwertung der Brinell- oder Vickershärte auf die Zugfestigkeit von Baustählen vorzunehmen. Dadurch können beispielsweise bei Prüfungen an Stahlkonstruktionen Materialverwechslungen nachgewiesen werden.

Die meisten Materialien großer Härte haben auch eine hohe Sprödigkeit, sie lassen sich also kaum plastisch verformen und brechen plötzlich. Darauf beruht unter anderem die Technik des Glasschneidens.

Für die Konstruktion von Bauteilen müssen Härte und Zähigkeit sinnvoll ausgeglichen werden: Das harte, spröde Bauteil bricht leicht, wenn einmal eine Belastungsspitze auftritt. Zähes (also weniger hartes) Material würde dies schadlos oder nur mit geringen Folgen überstehen. Letzteres würde sich jedoch schnell abnutzen. Es wird daher oft angestrebt, einen großen Innenbereich (Kern) aus zähem, festem Werkstoff mit einer sehr harten Oberflächenschicht zu versehen. Diese bringt zwei Vorteile: Die Beständigkeit gegen Abnutzung nimmt zu und Anrisse können sich wesentlich schlechter bilden. Die eigentlichen Lasten werden im Innenbereich aufgenommen.

Härtepräfung und Härteskalen

Die Härte lässt sich nur durch den Vergleich von mehreren Werkstoffen oder Werkstoffzuständen ermitteln.

Härteprüfung nach Mohs

Harte Werkstoffe ritzen weiche. Diese Einsicht ist Grundlage der Härteprüfung nach Friedrich Mohs, die vornehmlich in der Mineralogie zum Einsatz kommt. Mohs, ein Geologe, ritzte verschiedene Minerale gegeneinander und ordnete sie so nach ihrer Härte. Durch das exemplarische Zuordnen von Zahlenwerten für ausgewählte Minerale entstand eine Ordinalskala, die Mohs-Skala, die in der Mineralogie und Geologie in weitem Gebrauch ist. Angaben zur Härte von Mineralen beziehen sich immer auf die Mohs-Skala, falls nichts anderes angegeben ist. Zum Vergleich aufgeführt ist die auch als absolute Härte bezeichnete Schleifhärte nach Rosiwal, die den Schleifaufwand des jeweiligen Stoffes charakterisiert und einen besseren Eindruck von den tatsächlichen Härteverhältnissen gibt. Beide Härteskalen sind einheitslos. Außerdem ist in der Tabelle die Härte nach dem Vickersverfahren angegeben. Sie gibt den besten Bezug auf die heute gängigen Härtemessverfahren wieder.

Mineral Härte (Mohs) absolute Härte Vickershärte in HV Bemerkungen
Talk 1 0,03 2,4 mit Fingernagel schabbar
Gips oder Halit 2 1,25 36 mit Fingernagel ritzbar
Calcit (Kalkspat) 3 4,5 109 mit Kupfermünze ritzbar
Fluorit (Flussspat) 4 5,0 189 mit Messer gut ritzbar
Apatit oder Mangan 5 6,5 536 mit Messer noch ritzbar
Orthoklas (Feldspat) 6 37 795 mit Stahlfeile ritzbar
Quarz 7 120 1120 ritzt Fensterglas
Topas 8 175 1427  
Korund 9 1000 2060  
Diamant 10 140.000 10.060 härtestes natürlich vorkommendes Mineral; nur von sich selbst und (unter Hitzeeinwirkung) von Bornitrid ritzbar (Inzwischen sind einige wenige, künstlich hergestellte, härtere Materialien bekannt, unter anderem: Aggregierte Diamant-Nanoröhrchen - ADNR).

In der Werkstoffkunde, speziell bei den Metallen, werden vor allem Prüfverfahren eingesetzt, welche die Eindringhärte messen. Dabei werden genormte Prüfkörper unter festgelegten Bedingungen in das Werkstück gedrückt. Im Anschluss wird die Oberfläche oder Tiefe des bleibenden Eindruckes gemessen. Prinzipiell unterscheidet man statische und dynamische Härteprüfverfahren. Die dynamischen Prüfverfahren bringen die Belastung des zu prüfenden Teiles schlagartig auf; bei den statischen Verfahren ist die Belastung gleich bleibend oder allmählich zunehmend.

Härteprüfung nach Brinell

Brinell-Härteprüfung

Die vom schwedischen Ingenieur Johan August Brinell im Jahre 1900 entwickelte und auf der Weltausstellung in Paris präsentierte Methode der Härteprüfung kommt bei weichen bis mittelharten Metallen (DIN EN ISO 6506) wie zum Beispiel unlegiertem Baustahl oder Aluminiumlegierungen, bei Holz (ISO 3350) und bei Werkstoffen mit ungleichmäßigem Gefüge, wie etwa Gusseisen, zur Anwendung. Dabei wird eine Hartmetallkugel mit einer festgelegten Prüfkraft F in die Oberflüche des zu prüfenden Werkstückes gedrückt. Früher wurden als Eindringkörper neben den Kugeln aus Hartmetall auch Stahlkugeln verwendet. Nach dem letzten Stand der Normung ist eine Stahlkugel ab dem Jahr 2006 allerdings nicht mehr zulässig. Die Norm schreibt jetzt für alle Stoffe Kugeln aus Sinterhartmetall vor. Die verwendeten Kugeln haben Durchmesser von 10 mm, 5 mm, 2,5 mm, 2 mm und 1 mm.

Nach einer Belastungszeit von 10 bis 15 Sekunden für Stähle oder Gusseisen und 10 bis 180 Sekunden für Nichteisenmetalle oder deren Legierungen wird der Durchmesser des bleibenden Eindrucks im Werkstück gemessen und daraus die Oberfläche des Eindrucks bestimmt. Der zu bestimmende Durchmesser d ist der Mittelwert zweier rechtwinklig zueinander liegenden Durchmessern d1 und d2 des bleibenden Eindruckes. Bei anisotroper Verformung wird der zur Berechnung der Härte nötige Durchmesser aus dem größten d1 und kleinsten Durchmesser d2 gemittelt.

d = \frac {d_1 + d_2}{2}

Das Verhältnis von Prüfkraft zur Eindruckoberfläche multipliziert mit dem Wert 0,102 bezeichnet man als die Brinellhärte. Der angegebene Zahlenfaktor ist der Kehrwert von 9,81 und dient der Umrechnung der Krafteinheit Newton in die ältere Einheit Kilopond. Damit wird sichergestellt, dass Härtemessungen unter Verwendung moderner Einheiten dasselbe Resultat ergeben wie historische Werte, die auf heute veralteten Einheiten beruhen.

HBW = \frac {0{,}102 \cdot 2 \cdot F}{\pi \cdot D \cdot \left(D - \sqrt{D^2-d^2} \right)}

In obiger Formel ist die Kraft F in N, der Kugeldurchmesser D und der mittlere Eindruckdurchmesser d in mm einzusetzen.

Normgerechte Angabe der Brinellhärte: (nach DIN EN ISO 6506-1 Stand: 03/2006)

Neben dem Härtewert muss auch das verwendete Verfahren, der Kugeldurchmesser und die Prüfkraft immer mit angegeben werden.

Bsp.: 345 HBW 10/3000

wobei:

345 = Härtewert

HBW = Prüfverfahren*

10 = Kugeldurchmesser D in mm

3000 = Belastung (Kraft F) in Kilopond kp

Bei einer Belastung die länger als 15 s dauert muss die Belastungszeit ebenfalls angegeben werden. Bsp.: 210 HBW 5/750/60

*Bem.: Angaben wie HB oder HBS sind laut aktueller Norm nicht mehr zulässig (siehe DIN EN ISO 6506-1:2005 Stand: 03/2006 Kap 4.1 - Formelzeichen und Abkürzungen")

Eine Abwandlung der Brinellprüfung ist die Prüfung mit dem Poldihammer, bei welcher der Eindruck der Kugel durch einen undefinierten Hammerschlag von Hand erzeugt wird. Wegen der schlagartigen Belastung handelt es sich um ein dynamisches Härtepräfverfahren. Dabei dringt die Kugel rückseitig in einen Metallstab mit definierter Härte ein. Aus dem Verhältnis der beiden Eindruckdurchmesser kann dann die Härte des Prüflings berechnet werden. Die Methode hat den Vorteil, dass mit ihr beliebig gelagerte Prüflinge und verbaute Bauteile vor Ort geprüft werden können. Die auf diese Weise ermittelten Härtewerte stimmen zwar nicht exakt mit den statisch ermittelten Härtewerten überein, für die in der Industrie gestellten Ansprüche sind sie jedoch in den meisten Fällen ausreichend. Die Bezeichnung "Poldi" stammt vom gleichnamigen Stahlwerk im tschechischen Kladno, wo diese Prüfmethode entwickelt wurde.

Bei un- und niedriglegierten Stählen kann aus der Brinellhärte mit gewisser Toleranz die Zugfestigkeit (Rm) des Werkstoffes abgeleitet werden. Rm ≈ 3,5 × HBW

Härteprüfung nach Rockwell (HR)

Prinzip der Rockwell-Härte (B-Skala, Stahlkugel)

Es existieren mehrere Härteprüfverfahren, die für bestimmte Einsatzbereiche spezialisiert sind. Die unterschiedlichen Verfahren werden mit der Einheit HR und einer anschließenden Kennung gekennzeichnet; Beispiele für eine Rockwellbezeichnung sind HRA, HRB, HRC oder HR15N, bei Härteprüfung an Blechen bis zu einer Dicke von 0,20 mm HR15T und darüber hinaus HR30Tm. Die Rockwellprüfung ist sehr schnell, stellt aber hohe Ansprüche an die Einspannung des Prüflings im Prüfgerät. Sie ist ungeeignet für Prüflinge, die im Prüfgerät elastisch nachgeben, zum Beispiel Rohre.

Die Rockwellhärte eines Werkstoffs ergibt sich aus der Eindringtiefe eines Prüfkörpers bei Anliegen einer bestimmten Vor- und Prüfkraft. Prüfkörper, -kräfte, -dauer und Einheitenberechnungsformeln sind in der Norm EN ISO 6508-1 (früher EN 10109) festgelegt. Mit einer vorgegebenen Prüfkraft wird der Prüfkörper in die Oberfläche des zu prüfenden Werkstücks vorbelastet. Die Tiefe des Eindringens des Prüfkörpers bei Vorlast dient dabei als Bezugsebene. Danach wird der Eindringkörper über einen Zeitraum von mindestens zwei Sekunden und maximal sechs Sekunden mit der Hauptlast belastet. Anschließend wird diese wieder entfernt, so dass nur noch die Vorlast wirksam ist. Die Differenz der Eindringtiefen vor und nach Auflegen der Hauptlast ist das Maß für die Rockwellhärte des Werkstoffs. Die Rockwelleinheiten errechnen sich nach einer (je nach angewandter Normskale unterschiedlichen) Formel aus der Eindringtiefe. Die Eindringtiefe des Prüfkörpers wird mit einer Messuhr festgestellt, die mit der Prüfspitze verbunden ist.

Beispiele für Rockwell-Härten
Werkstoff Rockwell-Härte
Welle in einem Getriebe ca. 48 HRC
Messerklinge „Nirosta“ 53 HRC
Shiro-Gami-Stahl (Weißpapier-Stahl) 61 HRC
Ao-Gami-Stahl (Blaupapier-Stahl) 65 HRC
Schnellarbeitsstahl 60–65 HRC

Beim Verfahren nach Skala C (Einheit HRC) wird ein kegelförmiger Prüfkörper aus Diamant mit einem Spitzenwinkel von 120° und einer abgerundeten Spitze mit einem Radius von 0,2 mm verwendet. Dieses Prüfverfahren kommt vor allem bei sehr harten Werkstoffen zum Einsatz. Als weitere Rockwelleindringkörper werden nach Skala B Stahlkugeln mit einem Durchmesser von 1,5875 mm (HRB, HRF, HRG) oder 3,175 mm (HRE, HRH und HRK) verwendet. Für das Verfahren zulässige Härtewerte HRC müssen zwischen 20 und 70 liegen.


Härteprüfung nach Vickers

Vickers-Härteprüfung Der Brinellprüfung sehr ähnlich ist die im Jahr 1925 von Smith und Sandland entwickelte und nach der britischen Flugzeugbaufirma Vickers benannte Härteprüfung, die zur Prüfung harter und gleichmäßig aufgebauter Werkstoffe dient, aber auch zur Härteprüfung dünnwandiger oder oberflächengehärteter Werkstücke und Randzonen eingesetzt wird. Sie ist in der Norm nach DIN EN ISO 6507 geregelt. Im Gegensatz zur Rockwellprüfung wird eine gleichseitige Diamantpyramide mit einem Öffnungswinkel von 136° unter einer festgelegten Prüfkraft in das Werkstück eingedrückt. Aus der mittels eines Messmikroskops festgestellten Länge der Diagonalen des bleibenden Eindrucks wird die Eindruckoberfläche errechnet. Das Verhältnis von Prüfkraft in der Einheit Kilopond zur Eindruckoberfläche (d in Millimetern) ergibt mit dem Faktor 0,1891 multipliziert die Vickershärte (HV).

Die Härteprüfung nach Vickers ist in drei Bereiche zu unterteilen:1) Vickers-Härteprüfung → F > 49N 2) Vickers-Kleinkraftprüfung → 1,961 N < F < 49 N 3) Vickers--Mikrohärteprüfung → 0,09807 N < F < 1,961 N

HV = \frac {0{,}102 \cdot 2 \cdot F \cdot \sin \frac {136^\circ}{2}}{d^2} \approx 0{,}1891 \frac {F}{d^2}

dabei ist

d = \frac {d_1 + d_2}{2}

Normgerechte Angabe der Vickershärte:

Neben dem Härtewert muss auch das verwendete Prüfverfahren und die Prüfkraft immer mit angegeben werden.

Bsp.: 610 HV 10

wobei:

610 = Härtewert

HV = Verfahren

10 = Prüfkraft F in Kilopond

Für Prüfungen vor Ort sind tragbare Geräte erhältlich, die magnetisch oder mechanisch auf dem Prüfstück befestigt werden.

Anwendung findet die Vickershärte beispielsweise in der Angabe -45H- bei Gewindestiften mit Innensechskant oder -14H- und -22H- bei Gewindestiften mit Schlitz sowie in der Zahntechnik bei Dentallegierungen. (Die Festigkeitsklassen 14H, 22H, 33H und 45H erhält man durch Division durch 10, sie entsprechen also Vickershärten HV (min.) von 140, 220, 330 und 450.)

Dentallegierungen

Die Härte zahntechnische Metalle werden nach Vickers mit der Prüfkraft HV5 (entspricht 50 Newton) bei Edelmetalllegierungen oder HV10 bei NEM-Legierungen gemessen.

Für Dentallegierungen werden drei Härtewerte unterschieden:

Bei der Prüfdurchführung ist darauf zu achten, dass die Haltezeit der Prüfkraft 10 - 15 sec beträgt. Die Probe muss fest eingespannt und die Prüffläche absolut parallel zum Prüfkörper sein. Verschmutzungen etc. sind zu entfernen. Die Prüfung war erfolgreich, wenn die Kanten des Eindrucks gleichmäßig abgedrückt sind und Pyramidenspitze mittig abdrückt ist. In der Praxis ist es zu empfehlen mehrere Eindrücke zu machen, den max. und min. Wert aus 5 zu löschen und den Mittelwert aus den verbliebenen zu ermitteln.


 
Seitenende
Seite zurück
©  biancahoegel.de;
Datum der letzten Änderung: Jena, den: 12.01. 2024