Raum (Physik)

Der Raum ist eine Art „Behälter“ für Materie und Felder, in dem sich alle physikalischen Vorgänge abspielen. Dieses bewusst etwas unpräzise Verständnis des Begriffes „Raum“ ist seit Isaac Newton allgemein verbreitet und wurde erst durch Einstein infrage gestellt.

Dem entspricht, dass man in der menschlichen Erfahrung „ja schon immer weiß, was der Raum ist“, z.B. dass er durch die drei zueinander orthogonalen Dimensionen Höhe, Breite und Tiefe bzw. Abstand, Richtung und Höhe bestimmt ist. Raum ermöglicht allen materiellen Objekten eine Ausdehnung, er selbst existiert als grundlegendes Ordnungsmodell „a priori von den darin vorhandenen Objekten“, nach heutigem Verständnis aber nur in Relation zu ihnen. Wenn der Raumbegriff in diesem Sinne gebildet wird, hat es keinen Sinn, von einem „leeren“ Raum zu sprechen.

Zur physikalischen Beschreibung werden formale Eigenschaften verschiedener mathematischer Räume, meistens des euklidischen Raumes benutzt. Der Begriff des Raums hat sich in der Geschichte der Physik stark gewandelt.

Raum in der klassischen Mechanik

In der klassischen Mechanik gilt die Raumdefinition von Isaac Newton:

Hierbei entsprechen die Dimensionen eines Raumes den von ihm realisierten kartesischen Koordinaten, üblicherweise angegeben in x-, y- und z-Richtung. Man bezeichnet diese als Raumkoordinaten und die durch sie aufgespannten Dimensionen als Raumdimensionen, wobei keine Raumdimension einem Punkt, eine Raumdimension einer Geraden oder Kurve und zwei Raumdimensionen einer Fläche entsprechen. Die Bestimmung des Bezugspunktes eines Koordinatensystems benötigt reale Objekte. Meistens wird dazu der Schwerpunkt einer großen Masse wie der Erde oder der Sonne genommen.

Raum und Zeit

Hauptartikel: Raumzeit

Die Entdeckung, dass die Lichtgeschwindigkeit für alle Beobachter gleich ist, erforderte eine Modifikation des Raumbegriffes. Albert Einstein leistete in seiner Speziellen Relativitätstheorie die Vorarbeit, so dass Hermann Minkowski Raum und Zeit zu einem gemeinsamen Gebilde, der Raumzeit zusammenfassen konnte. Damit ist der Raum nicht mehr absolut, sondern vom Beobachter (genauer: dem Inertialsystem) abhängig. Dies äußert sich zum Beispiel in der Lorentzkontraktion, der zufolge relativ zueinander bewegte Beobachter für dasselbe Objekt eine unterschiedliche Länge messen.

In der Speziellen Relativitätstheorie ist der Raum zwar vom Beobachter abhängig, nicht jedoch von den physikalischen Vorgängen in ihm. Er ist immer noch für jeden Beobachter euklidisch. Das ändert sich in der Allgemeinen Relativitätstheorie. In dieser wird die Gravitation durch die Krümmung der Raumzeit beschrieben, welche auch eine Krümmung des Raumes bedeutet. Die Geometrie der Raumzeit hängt vom Energie-Impuls-Tensor, also von den im Raum vorhandenen Teilchen und Feldern ab. Der Raum ist daher nur noch lokal euklidisch.

Moderne Theorien zur Raumzeit

Die Kaluza-Klein-Theorien und Stringtheorien, die zum Ziel haben, die Gravitation mit den anderen Grundkräften zu vereinigen, fügen der Raumzeit zusätzliche Dimensionen hinzu. Diese zusätzlichen Dimensionen sind allerdings nicht, wie die bekannten 4 Raum-Zeit-Dimensionen, ins (beinahe) unendliche ausgedehnt; vielmehr sind sie von einer Ausdehnung von weniger als einem Atomkerndurchmesser. Zusätzlich nimmt man an, dass sie periodisch „aufgerollt“ sind bzw. dass sie als zusätzliche Freiheitsgrade (z.B. die sogenannte Quintessenz) in die vorhandene Raumzeit „hineinfließen“.

Ein Ziel dieser Theorien ist, den Raum mit seinen Eigenschaften nicht als etwas Gegebenes zu postulieren, sondern ihn in einer umfassenden Theorie gemeinsam mit den bekannten Grundkräften und Elementarteilchen zu begründen.

Eine abweichende Meinung wird durch die konstruktivistische Protophysik dargestellt, in der Geometrie und Chronometrie durch Normen für die Messinstrumente bestimmt wird.

Trenner
Basierend auf einem Artikel in Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 04.12. 2019