Protein-Faltungsklasse

Die Protein-Faltungsklassen (engl. protein fold class) beschreiben breite Kategorien an Topologien der Tertiärstruktur von Proteinen. Jede verschiedene Topologie kann als eine Faltung angesehen werden. Sie beschreiben Gruppen von Proteinen mit ähnlichen Anteilen an Aminosäuren und Sekundärstrukturen. Jede Klasse enthält mehrere unabhängige Protein-Superfamilien (d.h. sind nicht notwendigerweise evolutionär miteinander verwandt).[1][2]

Allgemein anerkannte Klassen

Die beiden Strukturklassifizierungs-Datenbanken SCOP und CATH haben sich auf vier große Protein-Faltungsklassen geeinigt.

all-α

All-α-Proteine sind eine Klasse von Strukturdomänen, in denen die Sekundärstruktur vollständig aus α-Helices besteht, mit der möglichen Ausnahme, dass einige isolierte β-Faltblätter an den äußeren Bereichen des Proteins existieren. Dazu gehören folgende Strukturelemente:

all-β

All-β-Proteine sind eine Klasse von Strukturdomänen, in denen die Sekundärstruktur vollständig aus β-Faltblättern besteht, mit der möglichen Ausnahme einiger isolierter α-Helices an den äußeren Bereichen. Dazu gehören folgende Strukturelemente:

α+β

α+β-Proteine sind eine Klasse von Strukturdomänen, in denen die Sekundärstruktur aus α-Helices und β-Strängen besteht, die getrennt entlang des Rückgrats auftreten. Die β-Stränge sind daher meist antiparallel.[3] Beispiele hierfür sind Ribonuklease A und die SH2-Domäne. Zu den Strukturelementen gehören:

α/β

α/β-Proteine sind eine Klasse von Strukturdomänen, in denen die Sekundärstruktur aus alternierenden α-Helices und β-Strängen entlang des Rückgrats besteht. Die β-Stränge sind daher meist parallel.[3] Dazu gehören folgende Strukturelemente:

Zusätzliche Klassen

Membranproteine

Membranproteine interagieren mit Biomembranen, indem sie entweder integriert oder über ein kovalent gebundenes Lipid gebunden werden. Sie sind neben löslichen globulären Proteinen, fibrillären Proteinen und ungeordneten Proteinen eine der häufigsten Arten von Proteinen.[5] Sie sind Ziele von über 50 % aller modernen Arzneimittel.[6] Es wird geschätzt, dass 20–30 % aller Gene in den meisten Genomen Membranproteine codieren.

Intrinsisch ungeordnete Proteine

Intrinsisch ungeordnete Proteine (IDP) haben keine feste oder geordnete dreidimensionale Struktur. [7][8] IDP decken ein Spektrum von Zuständen ab, von völlig unstrukturiert bis teilweise strukturiert, und umfassen Random Coils, (pre-)molten Globules und große Multidomänenproteine, die durch flexible Linker verbunden sind. Sie bilden eine der Haupttypen von Proteinen (neben globulären, fibrillären und Membranproteinen).[5]

Coiled-Coils

Coiled-Coils bilden lange, unlösliche Fasern, die an der extrazellulären Matrix beteiligt sind. Ein Coiled-Coil ist ein Strukturmotiv in Proteinen, in denen 2–7[9] α-Helices wie Stränge eines Seils zusammengewickelt sind (Dimere und Trimere sind die gebräuchlichsten Typen). Viele Coiled-Coil-Proteine sind an wichtigen biologischen Funktionen wie der Regulation der Genexpression beteiligt, z.B. Transkriptionsfaktoren.

Kleine Proteine

Kleine Proteine haben typischerweise eine Tertiärstruktur, die durch Disulfidbrücken (cysteinreiche Proteine), Metall-Liganden (metallbindende Proteine) und/oder Cofaktoren wie Häm aufrechterhalten wird.

Designte Proteine

Designte Proteine sind das Ergebnis rationalen Designs und existieren nicht in der Natur. Proteine können von Grund auf neu entworfen werden (De-novo-Design) oder indem berechnete Variationen einer bekannten Proteinstruktur und ihrer Sequenz vorgenommen werden (bekannt als Protein-Redesign). Rationale Protein-Design-Ansätze treffen Vorhersagen zu Proteinsequenzen, die sich zu bestimmten Strukturen falten werden. Diese vorhergesagten Sequenzen können dann experimentell durch Methoden wie Peptidsynthese, ortsspezifische Mutagenese oder künstliche Gensynthese validiert werden.

Einzelnachweise

  1. T. J. Hubbard, A. G. Murzin, S. E. Brenner, C. Chothia: SCOP: a structural classification of proteins database. In: Nucleic acids research. Band 25, Nummer 1, Januar 1997, S. 236–239, doi:Extern 10.1093/nar/25.1.236, Extern PMID 9016544, Extern PMC 146380 (freier Volltext).
  2. L. H. Greene, T. E. Lewis, S. Addou, A. Cuff, T. Dallman, M. Dibley, O. Redfern, F. Pearl, R. Nambudiry, A. Reid, I. Sillitoe, C. Yeats, J. M. Thornton, C. A. Orengo: The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. In: Nucleic acids research. Band 35, Database issueJanuar 2007, S. D291–D297, doi:Extern 10.1093/nar/gkl959, Extern PMID 17135200, Extern PMC 1751535 (freier Volltext).
  3. Hochspringen nach: a b A. V. Efimov: Structural similarity between two-layer alpha/beta and beta-proteins. In: Journal of molecular biology. Band 245, Nummer 4, Januar 1995, S. 402–415, doi:Extern 10.1006/jmbi.1994.0033, Extern PMID 7837272 (Review).
  4. I. Bruck, M. O'Donnell: The ring-type polymerase sliding clamp family. In: Genome biology. Band 2, Nummer 1, 2001, S. REVIEWS3001, doi:Extern 10.1186/gb-2001-2-1-reviews3001, Extern PMID 11178284, Extern PMC 150441 (freier Volltext) (Review).
  5. Hochspringen nach: a b A. Andreeva, D. Howorth, C. Chothia, E. Kulesha, A. G. Murzin: SCOP2 prototype: a new approach to protein structure mining. In: Nucleic acids research. Band 42, Database issueJanuar 2014, S. D310–D314, doi:Extern 10.1093/nar/gkt1242, Extern PMID 24293656, Extern PMC 3964979 (freier Volltext).
  6. J. P. Overington, B. Al-Lazikani, A. L. Hopkins: How many drug targets are there? In: Nature reviews. Drug discovery. Band 5, Nummer 12, Dezember 2006, S. 993–996, doi :Extern 10.1038/nrd2199, Extern PMID 17139284 (Review).
  7. A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh, C. J. Oldfield, A. M. Campen, C. M. Ratliff, K. W. Hipps, J. Ausio, M. S. Nissen, R. Reeves, C. Kang, C. R. Kissinger, R. W. Bailey, M. D. Griswold, W. Chiu, E. C. Garner, Z. Obradovic: Intrinsically disordered protein. In: Journal of molecular graphics & modelling. Band 19, Nummer 1, 2001, S. 26–59, Extern PMID 11381529 (Review).
  8. H. J. Dyson, P. E. Wright: Intrinsically unstructured proteins and their functions. In: Nature reviews. Molecular cell biology. Band 6, Nummer 3, März 2005, S. 197–208, doi:Extern 10.1038/nrm1589, Extern PMID 15738986 (Review).
  9. J. Liu, Q. Zheng, Y. Deng, C. S. Cheng, N. R. Kallenbach, M. Lu: A seven-helix coiled coil. In: Proceedings of the National Academy of Sciences. Band 103, Nummer 42, Oktober 2006, S. 15457–15462, doi:Extern 10.1073/pnas.0604871103, Extern PMID 17030805, Extern PMC 1622844 (freier Volltext).
Trenner
Basierend auf einem Artikel in: Extern Wikipedia.de
Seitenende
Seite zurück
© biancahoegel.de
Datum der letzten Änderung: Jena, den: 13.03. 2024