Barometer

Ein Barometer (altgriechisch: βαρύς barýs „schwer, gedrückt“ und μέτρον métron „Maß, Maßstab“) ist ein Messgerät zur Bestimmung des statischen Absolut-Luftdrucks und damit eine Sonderform des Manometers. Wird es für meteorologische Zwecke eingesetzt, zeigt es einen virtuellen Wert an, der dem aerostatischen Luftdruck auf Meereshöhe entsprechen würde. Als Sonderfall kann es indirekt zur Höhenmessung eingesetzt werden. Eine Weiterentwicklung des Barometers ist der Barograph, der die zeitliche Entwicklung des Luftdrucks an einem Ort schriftlich oder elektronisch erfasst. Eine weitere Weiterentwicklung des Barometers ist das Mikrobarometer, das in der Lage ist, auch winzige Druckunterschiede zu messen.

Etymologie

Der Begriff „Barometer“ wurde 1665/1666 durch den irischen Naturforscher Robert Boyle eingeführt. Er leitet sich vom griechischen βάρος báros „Schwere, Gewicht“ und μετρεῖν metreín „messen“ ab.

Typen

Flüssigkeitsbarometer

Quecksilberbarometer
Barometer aus dem 19. Jahrhundert

Flüssigkeitsbarometer bestehen aus einem mit einer Flüssigkeit gefüllten, senkrechten Rohr, das am oberen Ende luftdicht verschlossen ist. Das untere Ende taucht in ein Vorratsgefäß, das ebenfalls die jeweilige Flüssigkeit enthält. Durch ihr Eigengewicht fließt die Flüssigkeit aus dem Rohr, wobei am oberen Ende ein Unterdruck entsteht. Der Luftdruck wirkt dem entgegen, so dass die Flüssigkeitssäule bei einer bestimmten Höhe zur Ruhe kommt.

Quecksilberbarometer

Hierbei wird Quecksilber als Flüssigkeit genutzt, wobei man in diesem Fall von einem Quecksilberbarometer spricht. Bei Normbedingungen erreicht Quecksilber eine Höhe von 760 mm, sodass für genaue Ergebnisse der abgelesene Wert rechnerisch auf die Standardbedingungen korrigiert werden muss, wobei es zu beachten gilt, dass sich Quecksilber und Glasrohr bei einer Temperaturerhöhung ausdehnen:

p = p_a \cdot (1 - 0{,}000181 \cdot T)

 

mit:

Quecksilber wurde verwendet, weil durch sein hohes spezifisches Gewicht das Rohr kurz gehalten werden kann. Zum Vergleich müsste das Rohr bei Wasser etwa 10 Meter lang sein. Zum anderen verdunstet nur sehr wenig Quecksilber, trotz des Vakuums am oberen Ende des Rohres.

Das erste Quecksilberbarometer wurde 1643 von Evangelista Torricelli erfunden. Er beobachtete, dass sich die Höhe der Quecksilbersäule täglich veränderte und schloss daraus, dass sich auch der Luftdruck entsprechend ändert. Nach ihm wurde eine Einheit zur Messung des Luftdrucks (1 Torr = 1 mm Hg, entspricht ca. 133,32 Pa) benannt.

Seit 2009 ist die Herstellung und der Verkauf von Quecksilberbarometern sowie anderen Messgeräten, welche Quecksilber in leicht zerbrechlichen Behältnissen enthalten, in Deutschland, als Umsetzung einer EU-Verordnung, verboten.

Goethe-Barometer

Gotisches Wetterglas, Detail des Isenheimer Altars
Allgemeines

Das Prinzip eines Flüssigkeitsbarometers wird auch in leicht abgewandelter Form bei einem so genannten Goethe-Barometer genutzt, welches man auch als Goethe-Glas, Goethe-Wetterglas, Donnerglas oder Wetterglas bezeichnet. Hierbei handelt es sich um ein mit einer Flüssigkeit gefülltes, meist dekoratives Gefäß, welches an der Unterseite einen nach oben gestülpten und zur Erdatmosphäre hin offenen Schnabelhals besitzt, während das Hauptgefäß selbst gegenüber dem Luftdruck abgeschlossen ist. Bei niedrigem Luftdruck (oder bei steigender Temperatur) steigt daher der Flüssigkeitspegel im Schnabelhals und sinkt dementsprechend bei hohem Luftdruck. Zwar hatte Goethe ein solches Barometer in seinem Besitz, jedoch war er nicht der Erfinder dieses Barometertyps. Es ist unklar, wann und von wem es tatsächlich entwickelt wurde. Es dürfte aber so alt sein, wie das Aufkommen gläserner Gefäße mit Tülle. Daher gibt es zum Goethe-Glas etliche, frühere Varianten, zu denen das Niederländische Donner- oder Wetterglas zählt, das bereits 1619 gesichert ist. Dem nach hinten geschlossenen Goethe-Barometer gehen karaffenförmige Wettergläser mit langer tief sitzender Tülle voraus, die sich bis in das 17. Jahrhundert hielten. Sie mussten noch am Hals durch einen Wachsstopfen abgedichtet werden. Die bedeutendste Abbildung eines mittelalterlichen Wetterglases findet sich vor 1514 gemalt auf dem Engelskonzert von Matthias Grünewald. Es kündigt auf der Stufe eines himmlischen Pavillons mit Hochstand in der Tülle die Ankunft Mariens an.

Dosenbarometer

Dosenbarometer Prinzip.png
Dosenbarometer
Das Innere eines Dosenbarometers

Bei Dosenbarometern, auch Aneroidbarometern (v. griech.: α-νηρός „a-nerós“ „nicht flüssig“), wird ein dosenartiger Hohlkörper aus dünnem Blech durch den Luftdruck verformt. In der Dose herrscht ein Restdruck von etwa 5 mbar (= 5 hPa = 500 Pa), der die Änderung des Elastizitätsmoduls des Blechs durch die Temperatur kompensiert.

Ein derartiger Hohlkörper wird nach seinem Erfinder Lucien Vidie (1805–1866) auch Vidie-Dose genannt. Ab 1881 gab es mit Gotthilf Lufft auch in Deutschland einen ersten Hersteller für Dosenbarometer, der die Vidie-Dose weiterentwickelte und 1909 als eigenes Patent anmeldete.

Bessere Barometer oder Barographen benutzen einen Stapel von bis zu acht derartiger „Dosen“ übereinander, um die Empfindlichkeit der Messung zu erhöhen. Über eine Mechanik wird diese Verformung, bei steigendem Luftdruck eine Verdichtung und bei sinkendem Luftdruck eine Ausdehnung, auf einen Zeiger übertragen.

Ein Problem hierbei ist die Temperaturempfindlichkeit eines solchen Systems. Die Bestandteile der Dose selbst zeigen eine thermische Volumenausdehnung und für ihren Bau werden daher spezielle Legierungen verwendet, bei denen mehrere Komponenten sich nach ihrem Temperaturverhalten her gegenseitig kompensieren und auf diese Weise den störenden Effekt einer Wärmeausdehnung reduzieren, wobei es jedoch trotzdem temperaturbedingte Messfehler gibt. Druckmikrofon und Höhenmesser arbeiten ebenfalls nach diesem Prinzip.

(Vidie-Dosen kommen in der Luftfahrt auch beim Höhenmesser, Variometer und Fahrtmesser zum Einsatz.)

Röhrenbarometer

Beim Röhrenbarometer oder Bourdonfeder wird der Umstand, dass bei einem gebogenen Rohr die Außenseite eine größere Fläche aufweist als die Innenseite und damit bei steigendem Druck die Kraftwirkung von außen größer ist, genutzt. Die Verformung in Abhängigkeit vom Druck wird auf einen Zeiger übertragen.

Anwendungen

Barometer werden meist in der Meteorologie verwendet und gehören hier als Standardinstrument zu nahezu jeder Wetterstation. Da der Luftdruck mit der Höhe abnimmt, dienen sie auch als Höhenmesser (Altimeter) in Flugzeugen. Wird nicht der Luftdruck der Erdatmosphäre, sondern ein künstlich erzeugter Über- oder Unterdruck gemessen, so spricht man von einem Manometer. Ein weiteres verwandtes Gerät ist das Variometer, das über die Veränderung des Luftdruckes eine Höhenänderung anzeigt (siehe auch Hypsobarometer, Höhenschreiber und Luftdruckmessung in der Luftfahrt). Der Verlauf einer Luftdruckänderung wird mit Barographen aufgezeichnet.

Oft werden Barometer, meist minderer Qualität, in den mittleren Breitengraden als „Wetteranzeigen“ verwendet, da sich Luftdruckänderungen und „schlechtes“ bzw. „gutes“ Wetter hier gegenseitig teilweise beeinflussen. Grund hierfür ist, dass der Frontendurchzug dynamischer Tiefdruckgebiete eine typische Luftdruckänderung zur Folge hat. Ein steigender Luftdruck wird dabei als Anzeichen für gutes Wetter und ein fallender Luftdruck als Anzeichen für schlechtes Wetter interpretiert. Da diese Tendenzen jedoch nur in bestimmten Fällen meteorologisch zu rechtfertigen sind und auch Schlechtwetterereignisse mit einem steigenden Luftdruck einhergehen können, stellen diese nur eine sehr grobe Wettervorhersage dar.

In Kombination mit anderen Messgeräten finden Barometer in Aerographen Verwendung.

Zu Lehrzwecken ist am Meteorologischen Institut der Ludwig-Maximilians Universität München ein 10 m hohes Wasserbarometer aufgebaut. Hier kann auch der Einfluss des Dampfdruckes in dem Raum über der Wassersäule gezeigt werden.

Eine sehr interessante Anwendung des Dosenaneroids besteht in der selbsttätigen Kompensation der Einflüsse des schwankenden Luftdrucks auf Präzisionspendeluhren. Der Astronom Professor Bernhard Wanach schlug im 19. Jahrhundert erstmals die Anwendung eines Dosenbarometers an Pendelstäben vor. Die Anordnung der sogenannten Aneroiddosenkompensation besteht aus mehreren in Serie geschalteten Dosen, die mit einem Auflagegewicht belastet sind. Das Gewicht wird von den Dosen in Abhängigkeit vom Luftdruck längs des Pendelstabs bewegt und ändert so das Trägheitsmoment des Pendels. Noch heute werden mit genau berechneten Luftdruckkompensationsinstrumenten bei Präzisionspendeluhren hervorragende Ergebnisse erzielt.

Trenner
Basierend auf einem Artikel in: externer Link Wikipedia.de
 
Seitenende
Seite zurück
©  biancahoegel.de;
Datum der letzten Änderung: Jena, den: 05.12. 2022